Parameter estimation in nonlinear environmental problems
نویسندگان
چکیده
Popular parameter estimation methods, including least squares, maximum likelihood, and maximum a posteriori (MAP), solve an optimization problem to obtain a central value (or best estimate) followed by an approximate evaluation of the spread (or covariance matrix). A different approach is the Monte Carlo (MC) method, and particularly Markov chain Monte Carlo (MCMC) methods, which allow sampling from the posterior distribution of the parameters. Though available for years, MC methods have only recently drawn wide attention as practical ways for solving challenging highdimensional parameter estimation problems. They have a broader scope of applications than conventional methods and can be used to derive the full posterior pdf but can be computationally very intensive. This paper compares a number of different methods and presents improvements using as case study a nonlinear DNAPL source dissolution and solute transport model. This depth-integrated semianalytical model approximates dissolution from the DNAPL source zone using nonlinear empirical equations with partially known parameters. It then calculates the DNAPL plume concentration in the aquifer by solving the advection-dispersion equation with a flux boundary. The comparison is among the classical MAP and some versions of computer-intensive Monte Carlo methods, including the Metropolis–Hastings (MH) method and the adaptive direction sampling (ADS) method.
منابع مشابه
Online State Space Model Parameter Estimation in Synchronous Machines
The purpose of this paper is to present a new approach based on the Least Squares Error method for estimating the unknown parameters of the nonlinear 3rd order synchronous generator model. The proposed method uses the mathematical relationships between the machine parameters and on-line input/output measurements to estimate the parameters of the nonlinear state space model. The field voltage is...
متن کاملAn optimal analytical method for nonlinear boundary value problems based on method of variation of parameter
In this paper, the authors present a modified convergent analytic algorithm for the solution of nonlinear boundary value problems by means of a variable parameter method and briefly, the method is called optimal variable parameter method. This method, based on the embedding of a parameter and an auxiliary operator, provides a computational advantage for the convergence of the approximate soluti...
متن کاملApproximation Results for Parameter Estimation
In this paper we present an approximation framework and theoretical convergence results for a class of parameter estimation problems for general abstract nonlinear hyperbolic systems. These systems include as a special case those modeling a large class of nonlinear elastomers.
متن کاملParameter Estimation of Loranz Chaotic Dynamic System Using Bees Algorithm
An important problem in nonlinear science is the unknown parameters estimation in Loranz chaotic system. Clearly, the parameter estimation for chaotic systems is a multidimensional continuous optimization problem, where the optimization goal is to minimize mean squared errors (MSEs) between real and estimated responses for a number of given samples. The Bees algorithm (BA) is a new member of me...
متن کاملA Statistical Method for Regularizing Nonlinear Inverse Problems
Inverse problems are typically ill-posed or ill-conditioned and require regularization. Tikhonov regularization is a popular approach and it requires an additional parameter called the regularization parameter that has to be estimated. The χ method introduced by Mead in [8] uses the χ distribution of the Tikhonov functional for linear inverse problems to estimate the regularization parameter. H...
متن کاملParameter Estimation By Genetic Algorithms
Most of the existing parameter estimation methods require much auxiliary information and is not easy to handle for practical applications. In this paper , we use genetic algorithms, which are becoming an important tool for optimization problems, to estimate parameters in nonlinear regression models. The computational experiments indicate that this genetic based method is useful, eeective and ad...
متن کامل